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The main activities in the hole drilling residual stress measurement technique recently developed at the
University of Pisa are reviewed and presented. Particular attention was paid to developing tools for in-
creasing the limits indicated by the presently applied standard procedures for residual stress evaluation.
For residual stresses that were assumed to be uniform through-thickness, the effect of plasticity was nu-
merically analyzed and results formed the basis for a procedure that allows an increase in the maximum
measurable residual stress up to 0.9 of the material yield strength. For nonuniform through-thickness re-
sidual stress, accurate analytical influence functions are proposed by which arbitrary interpolation of
the influence coefficients is avoided and all the experimentally obtained strains, with no regard to their
number, can be used as input for residual stress evaluation.

1. Introduction

The hole drilling method (HDM) is a semidestructive ex-
perimental technique for measuring residual stress (RS) at the
surface of a body. It is based on the measurement of the strain
produced by the local stress relaxation induced by drilling a
small-diameter hole (typically 1 to 5 mm). A complete evalu-
ation of the relaxed strain field (in the elastic regime) can be ob-
tained by a three-gage rosette, whose typical shape is shown in
Fig. 1.

In the standard procedure, as defined for instance by ASTM
E 837-95 (Ref 1), the complete RS field (i.e., principal stress
values and orientation) can be evaluated from the strains meas-
ured by the rosette, by means of relationships based on the elas-
tic plane stress solution for an infinite body having a
pass-through hole and subjected to uniform through-thickness
stress at infinity.

Such a procedure has two main drawbacks, which can sig-
nificantly restrict the practical applicability of the HDM. The
first is related to the hypothesis of linear elastic material behav-
ior. Indeed, in order to limit the effect of plasticity on the meas-
urement, the maximum measurable RS is set to one-half of the
material yield strength. The second limitation is connected
with the requirement of through-thickness RS uniformity. Sig-
nificant variations of RS with depth are often observed in prac-
tical applications.

Due to the high practical importance of the HDM, a relevant
amount of research has been devoted to overcome these limita-
tions, particularly the second one. Mainly collecting partial re-
sults recently published by the authors, this paper gives a
general overview of the work carried out at the University of
Pisa in these fields. It is a part of a wider research activity that
includes theoretical and experimental studies on the influence

of RS on fracture and fatigue crack growth of materials and
structures (Ref 2, 3).

Regarding the effects of plasticity, a procedure is proposed
that allows a satisfactory evaluation of RS up to 90% of mate-
rial yield strength. Regarding the through-thickness RS vari-
ability, the aim is the development of analytical influence
functions, that can make RS evaluation more simple and accu-
rate.

The present contribution is mainly of a methodological na-
ture and is intended to propose more accurate and general tools
for elaborating measured strains in order to obtain residual
stresses. As for any other experimental procedure, some as-
pects of these methodologies require direct validation. This is
particularly true for the effect of plasticity. These experimental
activities are now under development and no conclusive result
has been yet reached.
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Fig. 1 Typical standard rosette for hole drilling residual stress
measurement
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2. Residual Stress Evaluation with Plasticity

2.1 Problem Formulation and Discussion of Analytical
Approaches

Even though RS is elastic, the HDM can produce local plas-
ticity near the hole boundary due to the notch effect. This in-
creases the strain actually measured as compared to an elastic
material, producing an overestimate of the RS. In these condi-
tions the equations usually employed to relate residual stresses
to measured relaxed strains are obviously no longer valid. In
the following a procedure applicable to elastic-plastic condi-
tions is described.

Following the same approach employed in deriving linear
elastic relationships suggested by ASTM, the study was con-
ducted with reference to the following (ideal) cases:

• Infinite plate, in plane stress conditions, carrying a pass-
through hole (PTH)

• Semi-infinite body carrying a blind hole (BH)

For both cases, a uniform stress distribution was assumed at
large distance from the hole and the material was considered to
exhibit a bilinear stress-strain behavior. This required two
more material properties: the yield strength, σys, and the tan-
gent modulus (defined for uniaxial loading) in plastic regime,
Ep.

The infinitely extended body hypothesis is currently em-
ployed in the standard HDM procedure, even in the absence of
plastic phenomena, and therefore its use does not imply signifi-
cant loss of generality. It is, however, the responsibility of the
analyst to decide about the applicability of this hypothesis in
particular cases, providing for alternative analysis methods
(e.g., deriving specific correlation functions by numerical ana-
lyzes or calibration techniques) whenever validity is question-

able (e.g., for measures in the neighborhood of sharp notches or
edges).

As regards the hypothesis of a bilinear stress-strain law, it
must be observed that in HDM, strains produced by stress re-
laxation are relatively small (within 1% for typical metallic
materials). As a consequence, the material plastic behavior can
be linearly approximated without significant errors, provided
that this relationship is specifically selected in order to repro-
duce the near-yield stress-strain curve. It is well known that the
results of an elastic-plastic analysis can be strongly affected by
the choice of the yielding point and that several definitions,
mainly of a conventional nature, are usually adopted for this
point, particularly for a material having a smooth stress-strain
curve. In our opinion, the possibility of choosing different
strain hardening coefficients can reduce the arbitrariness of
this choice because two parameters are available to fit the local
stress-strain behavior. However, a proper analysis is necessary
for correctly setting these parameters. A study on this aspect,
also involving experimental verifications, is now under devel-
opment.

A general solution for the two reference cases cannot be
reached by completely analytical methods. Particular solutions
were obtained for the PTH problem under equibiaxial loading
and assuming an elastic/perfectly plastic material (Ref 4, 5).
An analytical solution for the same problem in the presence of
general biaxial loading conditions is proposed in (Ref 6) under
the questionable hypothesis of a plastic zone completely sur-
rounding the hole. This hypothesis was not confirmed by nu-
merical analyzes (Ref 7), and moreover, this approach does not
appear to be suitable for practical applications due to the com-
plexity of the expressions relating RS and relaxed strains and to
the lack of an account for the influence of material strain hard-
ening properties, which are often significant near yielding. No
analytical solution is available for the BH problem.

Fig. 2 FE models for elastic-plastic analyses. (a) Plane stress model for PTH. (b) 3-D model for BH
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2.2 Finite Element Analyses

Due to these difficulties, it became necessary to solve the
proposed problems by means of a numerical method. The finite
element (FE) models reported in Fig. 2(a) and (b) were set up,
making use of the ANSYS FE code, in order to analyze the PTH
and the BH problems, respectively. The presence of a general
biaxial residual stress field was simulated by imposing uniform
pressure distributions on the sides not containing the hole.
These pressures were assumed to be equal to the principal re-
sidual stresses in the body before the hole was drilled.

The overall dimensions of these models and the size and dis-
tribution of elements were defined, through a preliminary con-
vergence analysis, to ensure the independence of results
(within less than 0.5%) from mesh parameters. An in-plane
model size equal to 30 times the hole radius was selected for
both cases, and the model thickness was set to 5 times the maxi-
mum hole depth for the BH.

The accuracy of results was further checked by comparison
with available analytical solutions. For pure elastic analysis,
the relationships given in (Ref 1) were assumed as reference for
both models, while in the elastic-plastic regime the comparison
was possible only for PTH using the results from Ref 5 (elas-
tic/perfectly plastic material and axysymmetric loading). In
any case, differences less than 1% were observed, which were
considered satisfactory for the present purpose.

The strain gage response was evaluated by averaging strain
on the strain gage active grid region. The influence of the fol-
lowing parameters was taken into account:

• Residual stress intensity
• Biaxiality ratio: Ω = σx/σy  (Eq 1)                                                                                                                                        
• Hardening coefficient: r = Ep/E (Eq 2)                                                                                                                                        
• Rosette orientation : ϕ

Geometrical symmetries and the hypothesis of equal tensile
and compressive material behavior allowed us to limit the
range of analysis for the biaxiality ratio between –1 (pure
shear) to 1 (equibiaxial). Five Ω values were examined in this
range (–1, –0.414, 0, 0.414, 1). As regards to the RS intensity,
nine loading levels were selected for each biaxiality ratio, rang-
ing from the onset of plasticity at the hole boundary to near-
complete body yielding. A representation of the analyzed
loading conditions is reported in Fig. 3. The initial yielding lo-
cus, determined for PTH by the elastic theoretical solution, was
also employed to define the lower-level loading conditions for
the BH problem.

Four hardening coefficients were considered: 0.01 (used
for numerically reproducing perfectly plastic material), 0.1,

Fig. 3 Loading conditions for the elastic-plastic calculations

Fig. 4 Errors due to the direct application of the ASTM standard during RS measurements for different material properties. (a) PTH. (b) BH
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0.25, and 0.5. These values were thought to adequately repre-
sent the near-yielding strain hardening properties of actual ma-
terials. In the end 360 elastic-plastic FE analyzes were
performed.

2.3 Main Results and Discussion

For each FE analysis, the readings of an ASTM standard ro-
sette were calculated at several angular orientations around the
hole. These numerically simulated strains were then applied as
input data in the standard ASTM procedure (valid for elastic
material only). The so-obtained stress components, hereafter
called σi,ASTM (i = x, y), were employed to directly evaluate the
errors produced by neglecting plasticity.

The calculated maximum principal stress for all the load
cases is reported in Fig. 4 as a function of the actual value for
PTH and BH. It can be observed that, neglecting plasticity, re-
sidual stresses may be overestimated by more than 60 to 70%
and 30%, respectively, under unfavorable conditions. Because
these errors appear unacceptable for many practical applica-
tions, a general-purpose procedure capable of giving a more ac-
curate RS prediction in the presence of plastic strain was
developed on the basis of these results.

With the focus on obtaining a comparable representation of
the RS level for any biaxiality ratio, a dimensionless factor f
representing loading intensity was defined as:

f = 
σeq − σeq,i

σys − σeq,i
(Eq 3)

where σeq,i is the equivalent (Mises) RS producing the onset of
yielding (see Fig. 2). The loading factor f is negative when the
material is elastic and assumes values ranging between 0 (onset
of yielding) and 1 (general plate yielding) in the plastic regime
for any biaxiality ratio.

In Fig. 5 the ratio between the readings of two strain gages
aligned with RS principal directions, ε

_
y and ε

_
x, is plotted as a

function of the loading factor. This ratio seems to be nearly in-
dependent of the loading level. This observation suggested that
the biaxiality ratio can be estimated from the ratio between the
strains measured in the principal directions, by using the fol-
lowing relationship, valid in the elastic regime:

Ω = 
σy

σx

 ≅  

(A − B) − 
ε
_

y

ε
_

x

(A + B)

ε
_

y

ε
_

x

 (A − B) − (A + B)

(Eq 4)

where A and B are coefficients given by ASTM (Ref 1) depend-
ing on the material elastic constants and on the rosette and hole
geometry. The nearly equal sign in Eq 4 indicates that this
equation is approximately valid in the elastic-plastic regime
too. This allows us to estimate Ω in the elastic-plastic regime
by the measured strains in the principal directions ε

_
x and ε

_
y.

The effective loading factor f is compared to fASTM  in Fig. 6
for the PTH case (similar trends were observed for the BH
case). The relationship between the two quantities appears to
be well represented by a parabolic law, whose coefficient C is
a function of the biaxiality ratio:

fASTM = f + C(Ω)f2 (Eq 5)

A suitable expression for C was obtained by a fitting tech-
nique, giving:

C = 0.793(1 – r)2.167 [0.6495 sin (2γ) + 1] for the PTH

(Eq 6a)

C = (0.167 – 0.281r) [sin(2γ) + 0.299 – 0.390r]  for the BH

(Eq 6b)

Fig. 5 Ratio between strain measured in the principal direc-
tions vs. loading intensity for several biaxiality ratios. In the fig-
ure a particular case is shown, but similar trends were observed
for other strain hardening cases and also for BH.

Fig. 6 Effective vs. ASTM estimated loading factors. Both nu-
merically estimated points (symbols) and fitting curves (Eq 5)
are shown.
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where γ  = tan–1 Ω (biaxiality angle).
An estimate of the effective loading factor can be obtained

by solving Eq 5:

fes = 
√1 + 4CfASTM − 1

2C
(Eq 7)

Once the equivalent residual stress and the biaxiality ratio
are known, the principal residual stress values σx,es and σy,es
can be estimated as:

σx,es = σys 



fes ⋅ 





1

√Ω2 − Ω + 1
 − 

1
3 − Ω




 + 

1
3 − Ω





(Eq 8a)

σy,es = Ωσx,es (Eq 8b)

where Ω is given by Eq 4.
The comparison of the maximum residual stress obtained by

Eq 8(a) and (b) with actual values for all the analyzed cases is
reported in Fig. 7. The error is usually less than 0.02σys, reach-
ing 0.05σys in the worst condition (r = 0.01, σeq = 0.9σys,
PTH). The error on the minimum principal stress was found to
be less than 0.10σys.

If the principal directions are not known, the angle ϕ and the
extreme strain values ε

_
x and ε

_
y must be evaluated from the read-

ings of the three strain gages: ε
_

1, ε
_

2, and ε
_

3. This induces a new
source of error. Indeed, when plasticity is negligible, the meas-
ured strain exhibits a sinusoidal dependence from the strain
gage angular position and the three measurements of the rosette
give the necessary and sufficient conditions for evaluating the

required extreme values ε
_

x and ε
_

y, and the angle ϕ. Unfortu-
nately, in the elastic-plastic regime, the angular dependence of
measured strain is no more sinusoidal, and in general, the ex-
treme values cannot be evaluated only on the basis of the three
readings obtainable from a standard rosette generically ori-
ented. If a sinusoidal approximation of the effective angular
dependence is applied, the accuracy of the results is affected by
the rosette orientation.

Figure 8 shows the maximum RS calculated with Eq 8(a)
and by applying the sinusoidal approximation for determining
ε
_

y/ε
_

x for different orientations of the rosette (ϕ = 0°, 15°, 30°,
and 45°, PTH case). As a consequence of the error in the evalu-
ation of the extreme strain values, results in Fig. 8 are affected
by a scatter higher than in Fig. 7(a) (material properties and
loading conditions are the same).

For many practical purposes the obtainable precision is still
acceptable (compare to Fig. 4), the errors on the maximum re-
sidual stress component being not greater than 20% in the
worst condition (r = 0.01). However, an improvement can only
be reached when the principal directions are known and the ro-
sette is placed so that ϕ = 0. In this case strain gages 1 and 3 in
Fig. 1 directly give the required strains.

2.4 Procedure for Residual Stress Measurement above
0.5σys

Based on the above considerations, the following general
procedure can be applied in order to reduce the error in estimat-
ing high residual stresses:

1. Compute the principal RS (σx,ASTM, σy,ASTM) and the angle
of the x principal direction with the rosette (ϕ) by the stand-
ard ASTM procedure (i.e., assuming a linear elastic mate-
rial behavior).

Fig. 7 Comparison between true maximum RS and that estimated by the proposed procedure (Eq 8a, b) when the strains in the principal di-
rections are known. (a) PTH. (b) BH
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2. Compute the biaxiality factor value (Ω). To this end, two
situations are to be considered:

• Residual stress principal directions are known. Gages 1 and
3 have to be aligned with the principal directions, so that
they directly measure the extreme strain values ε

_
x and ε

_
y.

The biaxiality factor can then be calculated as:

Ω = 

(A − B) − 
ε
_

y

ε
_

x

 (A + B)

ε
_

y

ε
_

x

 (A − B) − (A + B)

(Eq 9)

• Principal directions are unknown. In this case the biaxiality
factor must be approximated by:

Ω = 
σy,ASTM

σx,ASTM

(Eq 10)

3. Compute σeq,i and the elastic load intensity factor:

σeq,i = σys 
√(1 − Ω + Ω2)

(3 − Ω)
(Eq 11)

fASTM = 
σeq,ASTM − σeq,i

σys − σeq,i

(Eq 12)

4. Compute the estimated load parameter, fes by Eq 7.

5. Compute the stress level by Eq 8.

2.5 Proposal for an Alternative Measurement Method

As shown, the accuracy of results is in general reduced by
the distortion of the angular dependence of the strain due to
plasticity. This effect cannot be eliminated without further
data. When principal directions are unknown a modified ro-
sette is proposed. 

It has been noted that the actual strain angular dependence
can be described satisfactorily  by adding one further term in
the Fourier expansion, i.e., assuming the following relation-
ship for the measured strain:

ε
_
 = C0 + C1 cos (2(ϕ + χ)) + C2 cos (4(ϕ + χ)) (Eq 13)

that includes the elastic solution as a particular case (C2 = 0).
The evaluation of the unknown parameters (ϕ, C0, C1, C2) of

Eq 13 requires four independent conditions. For this reason the
use of a four-gage rosette, as shown in Fig. 9, is proposed,
whose readings ε

_
1, ε

_
2, ε

_
3, and ε

_
4 give the necessary and suffi-

cient conditions to evaluate the unknown coefficients in Eq 13.
By this rosette a sufficiently accurate prediction of the ex-

treme strains ε
_

x and ε
_

y can be obtained in spite of the rosette ori-
entation. Figure 10 shows the results of using this rosette for
evaluating the extreme strain values in the cases of Fig. 8. The
trend and the scatter are both comparable to those of Fig. 7,
which are the best obtainable with the proposed method and
can be accepted in many practical situations.

3. Analytical Influence Functions for Variable
Residual Stress Analysis

3.1 Variable Residual Stress

In many cases when RS evaluation is of interest (e.g., after
surface treatments), the dependence of RS on depth cannot be

Fig. 8 Maximum RS estimated on the basis of a standard three-
gage rosette variously oriented (0°, 15°, 30°, 45°) by assuming a
sinusoidal angular dependence for strain

Fig. 9 Proposed four-gage rosette for high residual stress 
measurement
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neglected. Information about the through-thickness variation
of RS can be obtained by drilling holes in a sequence of steps
and recording the strain gage readings at any step. This amount
of data has to be elaborated for having the RS distribution along
the hole depth.

A valuable contribution to the development of a correct pro-
cedure for obtaining through-thickness RS distribution was
done by Schajer (Ref 8, 9) on the basis of a FE parametric
analysis. Schajer’s approach is based on numerically evaluated
influence coefficients by which a system of linear equations
can be written relating RS distribution in the Z direction to the
relaxed strains obtained at several hole depths (z) (see Fig. 11).
Hereafter, capital letters indicate Cartesian coordinates and
lower case z indicates hole depths.

Schajer discussed two methods for evaluating variable re-
sidual stresses: the integral method and the power series
method. In the former, which is the more widely employed,
the domain of analysis (ranging from zero to the final hole
depth) is divided into a finite number of intervals and RS is
approximated by a discontinuous stepping function, con-
stant within each interval.

The influence coefficients are given only for a finite number
of regularly spaced hole depths and positions along the hole
surface. However, it is common that experimental hole depths
differ from those numerically simulated, thus requiring two-di-
mensional interpolation.

In the following, a proposal is presented for replacing the
discrete influence coefficients with continuous functions,
called influence functions.

3.2 Problem Statement

In accordance with ASTM E 835-95 and referring to Fig. 1
and 11, the following assumptions were made:

• Linear elastic homogenous isotropic material
• Plane stress condition for local RS field (i.e., σxx, σxy, σyy

>> σxz, σyz, σzz) with components independent to X and Y
(in the zone of the hole) and variable only with Z

• Semi-infinite solid, i.e., hole diameter (d) negligible as
compared to any significant linear dimension of the body

As shown by Schajer, under these hypotheses the problem
can be simplified by adopting the following scalar stress com-
ponents (which are functions of Z only):

P(Z) = (σ3 + σ1)/2

Q(Z) = (σ3 – σ1)/2

T(Z) = σ13 (Eq 14)

where σ1, σ3, and σ13 indicate normal and shear stress compo-
nents in the reference system aligned with the rosette (Fig. 1).
Similarly, the following quantities of the measured strain
(which are functions of the hole depth z only) can be defined:

p(z) = (ε
_

3 + ε
_

1)/2

q(z) = (ε
_

3 − ε
_

1)/2

t(z) = (ε
_

3 − ε
_

1 − 2ε
_

2)/2 (Eq 15)

where ε
_

1, ε
_

2, and ε
_

3 are the strain gage measurements during
drilling and therefore functions of z. Quantities P and p are re-
lated to the equibiaxial residual stress-strain level, while Q , T and
q, t are related to the stress-strain shear level. It can be demon-
strated that, using these quantities, the following equalities hold:

p(z) = ∫  

0

z

IA ⋅ P(Z)dZ

q(z) = ∫  

0

z

IB ⋅ Q(Z)dZ

t(z) = ∫  

0

z

IB ⋅ T(Z)dT (Eq 16)

Fig. 11 Scheme for the through-thickness variable RS evaluation
Fig. 10 Evaluation of maximum RS by a variously oriented
four-gage rosette (0°, 15°, 30°, 45°)
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where IA and IB are suitable influence functions of geometry
and material properties to be determined.

If the influence functions IA and IB were available, Eq 16
could be regarded as three integral equations in which p, q, and
t are known while P, Q, and T are unknown functions. In prac-
tical applications, p, q, and t functions are obtained by strain
measurements while influence functions must be evaluated by
theoretical or numerical methods.

3.3 Influence Function Analysis

Under the hypotheses indicated in the previous section, the
following general expression can be written for the influence
functions (IA is used as an example):

IA = IA(a, b, rm, d, E, ν, z, Z) (Eq 17)

in which three kinds of quantities can be distinguished:

• Geometrical parameters, mainly related to experimental ar-
rangement

• Material properties
• Geometrical variables

In order to obtain an approximate expression, some simpli-
fications can be introduced in Eq 17. First, from the results of
the general theory of elasticity, the dependence of E can be
made explicit because any component of strain is inversely
proportional to the Young’s modulus for a given external load-
ing and geometry. Moreover, geometrical parameters can be
reduced by adopting dimensionless quantities. As usual in this
kind of problem, the mean radius of the rosette (rm) was taken
as the reference distance, and consequently the following di-
mensionless geometrical quantities were defined:

φ = d/rm

ξ = a/rm

η = b/rm

h = z/rm

H = Z/rm (Eq 18)

Moreover, by assuming a particular rosette (or any other
geometrically self-similar), ξ and η can be fixed and the gen-
eral expressions for the influence functions can be further sim-
plified as follows:

IA = 
1
E

 ⋅ A(ϕ, ν, h, H)

IB = 
1
E

 ⋅ B(ϕ, ν, h, H) (Eq 19)

in which the independent variables cannot be further reduced
without lacking generality.

3.4 FE Analysis

An approximate analytical expression for the influence
functions was obtained on the basis of a series of linear elastic
FE analyzes. A virtually semi-infinite body was modeled by
means of plane Fourier isoparametric 8-node elements. This al-
lowed the simulation of both the equibiaxial and pure shear
loading required to obtain information related to IA and IB. Fig-
ure 12 illustrates the FE model, which includes zones having
different element densities (total number of degrees of freedom
was approximately 7200). Strain gage measurements were ob-
tained as described in the previous section. A preliminary con-
vergence study was conducted to assess the accuracy of results.
The estimate accuracy in strain evaluation was about 1%.

In order to reduce the number of required FE analyzes, a ref-
erence condition was considered by fixing the following typi-
cal parameters: ν = 0.3 and φ = 0.8. This required two further
influence functions to be defined:

A0(h, H) = E ⋅ IA(0.8, 0.3, h, H)

B0(h, H) = E ⋅ IB(0.8, 0.3, h, H) (Eq 20)

A sequence of 40 hole depths were analyzed by means of an
automatic procedure in which successive element layers were
removed. For any hole depth h a sequence of loading condi-
tions were analyzed by assuming a unitary uniform pressure
applied from H = 0 to H = H* where H* ≤h for any of them.
The corresponding values of the strain on the rosette were cal-
culated. With these results, a set of integral conditions of the
following type can be written:

∫  

0

H∗

A0(h, H) dH = E ⋅ pn(h, H∗) (Eq 21)

where pn(h, H*) is the calculated equibiaxial strain component.

Fig. 12 FE model for evaluation of influence functions. Details of the hole region are shown.
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Equation 21 may be regarded as a set of conditions that the
unknown function A0(h, H) has to satisfy. A double series ex-
pansion was assumed for it:

A0(h, H) = ∑ 

i = 1

n

 ∑ 

j = 1

n

 αijH n−ih n−J (Eq 22)

in which αij are coefficients to be evaluated.
By substituting Eq 22 into Eq 21, the integral equation is

transformed into a linear algebraic equation having αij as un-
knowns. The number of these equations is limited only by the
number of FE analyzes to be performed and by the element
through-thickness spacing. In the present case about 820 nu-
merically simulated strain measurements were used for each
influence function.

It was observed that n = 6 (36 unknown quantities) offered
a reasonable compromise between accuracy and numerical sta-
bility. The number of unknowns was considerably smaller than
the number of equations and a least-squares solution was
adopted for solving the linear system.

In Fig. 13 the integral value of the calculated function is
plotted, and the function itself is reported in Fig. 14. By assum-
ing n = 6 the analytically defined surface in Fig. 13 is in fairly
good agreement with the FE obtained values (the two solutions
are not distinguishable in that scale and the FE solution is not
reported for clarity). An estimate of the accuracy of this influ-
ence function as regards to the FE evaluation can be obtained
by introducing the following function:

errA(h, H∗) = 

E ⋅ pn(h, H∗) −  ∫  

0

H∗

 ∑ 

i = 1

6

 ∑ 

j = 1

6

 αijH 6−ih 6−JdH

E ⋅ pn(h, H∗)

(Eq 23)

which measures the relative error in the solution of integral Eq
21. A plot of the error function is given in Fig. 15. It can be ob-
served that the maximum difference is about 1% while the error
is usually less than 0.5%. Because this accuracy is similar to
that estimated for the FE analysis, no further increase in the
number of unknowns was required.

A similar procedure was applied to the shear influence func-
tion, thus obtaining:

B0(h, H) =  ∑ 

i = 1

n

 ∑ 

j = 1

n

 βijH n−ih n−J (Eq 24)

which showed an accuracy similar to that of Eq 22 for n = 6.
The calculated αij and βij coefficients are reported in Tables 1
and 2, respectively.

3.5 Discussion

By means of Eq 22 and 24 any influence coefficient can be
obtained by a simple integration of polynomials. The matrices
proposed by Schajer were thus calculated by using the obtained
influence functions. Small differences (a few percent) were ob-

Fig. 13 Integral value for the reduced influence function A0

Fig. 14 Values of the reduced influence function A0

Fig. 15 Relative error on integrated A0

Journal of Materials Engineering and Performance Volume 7(2) April 1998171



served in the first coefficients (for shallow holes and forces
near the surface). It is reasonable to assume that those differ-
ences are due to the increased accuracy in the FE analyzes and
that they affect the evaluation of residual stresses only near the
free surface of the body.

The availability of a continuous expression for the influence
functions eliminates arbitrary interpolation when the influence
coefficients are requested for applying the integral method.
Moreover, there is virtually no limit to the number of experi-
mentally obtained hole depths. This is particularly useful in
practical applications, as recently proposed electronically con-
trolled hole drilling devices allow production of depth incre-
ments as small as 0.01 mm.

The present influence functions can also be easily used to
obtain other influence coefficients, such as those required for
the application of the power series method. In principle, this
could allow us to apply the power series method by including a
virtually unlimited number of terms, thus extending its applicabil-
ity to fields where the integral method is currently preferred.

4. Summary

This paper has presented the results recently obtained at the
University of Pisa in the improvement of the hole drilling
method. It was concerned with two main topics, the effects of
plasticity and the analysis of through-thickness variable stress.

As regards the effects of plasticity, based on a large number
of numerical simulations of measurements, rather simple em-
pirical relationships were written, which allow one to estimate
uniform residual stresses higher than one-half the material
yield strength. The rather large range of examined conditions
ensures that the proposed relationships cover most of the situ-
ations that can be encountered in practical applications.

If the RS principal directions are known, the proposed pro-
cedure permits measurement of residual stresses up to 90% of
the material yield strength, with errors contained within a few
percent. For high stress values, the accuracy obtainable by us-
ing a standard three-gage rosette is affected by the rosette ori-

entation and errors up to 20% can be expected. A notable im-
provement (errors within 5%) can be achieved by the introduc-
tion of a four-gage rosette that produces results practically
independent of its orientation.

In the field of through-thickness variable RS evaluation,
only linear elastic material response was examined. Analytical
expressions for the influence functions have been proposed,
which were obtained by numerical solution of integral equa-
tions, based on the results of accurate FE analyzes. These influ-
ence functions appear to give some advantages in variable RS
analysis, compared to currently employed methods.

As regards future research activities, integration of the two ap-
proaches may be indicated, aimed at defining a procedure capable
of analyzing variable RS fields in the elastic-plastic regime.
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Table 1 αij coefficients

i/j 1 2 3 4 5 6

1 7.94499E+02 –2.00261E+03 7.73108E+02 4.50399E+01 –2.34443E+01 –4.43709E+00
2 –1.75336E+03 7.10597E+03 –3.40893E+03 1.06428E+02 6.45780E+01 1.52406E+01
3 –3.87482E+02 –8.57291E+03 5.29455E+03 –5.12397E+02 –5.79213E+01 –2.10575E+01
4 3.69954E+03 3.29977E+03 –3.38436E+03 5.29955E+02 1.72611E+01 1.47916E+01
5 –3.15948E+03 6.40194E+02 6.99597E+02 –1.86427E+02 2.37442E-01 –5.37103E+00
6 7.93066E+02 –4.35446E+02 –5.36670E+00 2.57122E+01 1.84857E+00 –3.86883E-01

Table 2 βij coefficients

i/j 1 2 3 4 5 6

1 1.75992E+03 –3.30567E+03 1.13504E+03 1.92158E+02 –8.67759E+01 –2.54740E+00
2 –5.42858E+03 1.22611E+04 –5.33646E+03 –9.21497E+01 2.38296E+02 1.03604E+01
3 5.11779E+03 –1.62645E+04 8.64168E+03 –6.27958E+02 –2.33575E+02 –1.68976E+01
4 –5.08022E+02 8.85358E+03 –5.94844E+03 8.18798E+02 9.82501E+01 1.38004E+01
5 –1.39383E+03 –1.46253E+03 1.64114E+03 –3.36688E+02 –1.67071E+01 –5.67623E+00
6 4.32671E+02 –2.74571E+01 –1.86003E+02 6.53095E+01 1.02752E+00 –5.72400E-01
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